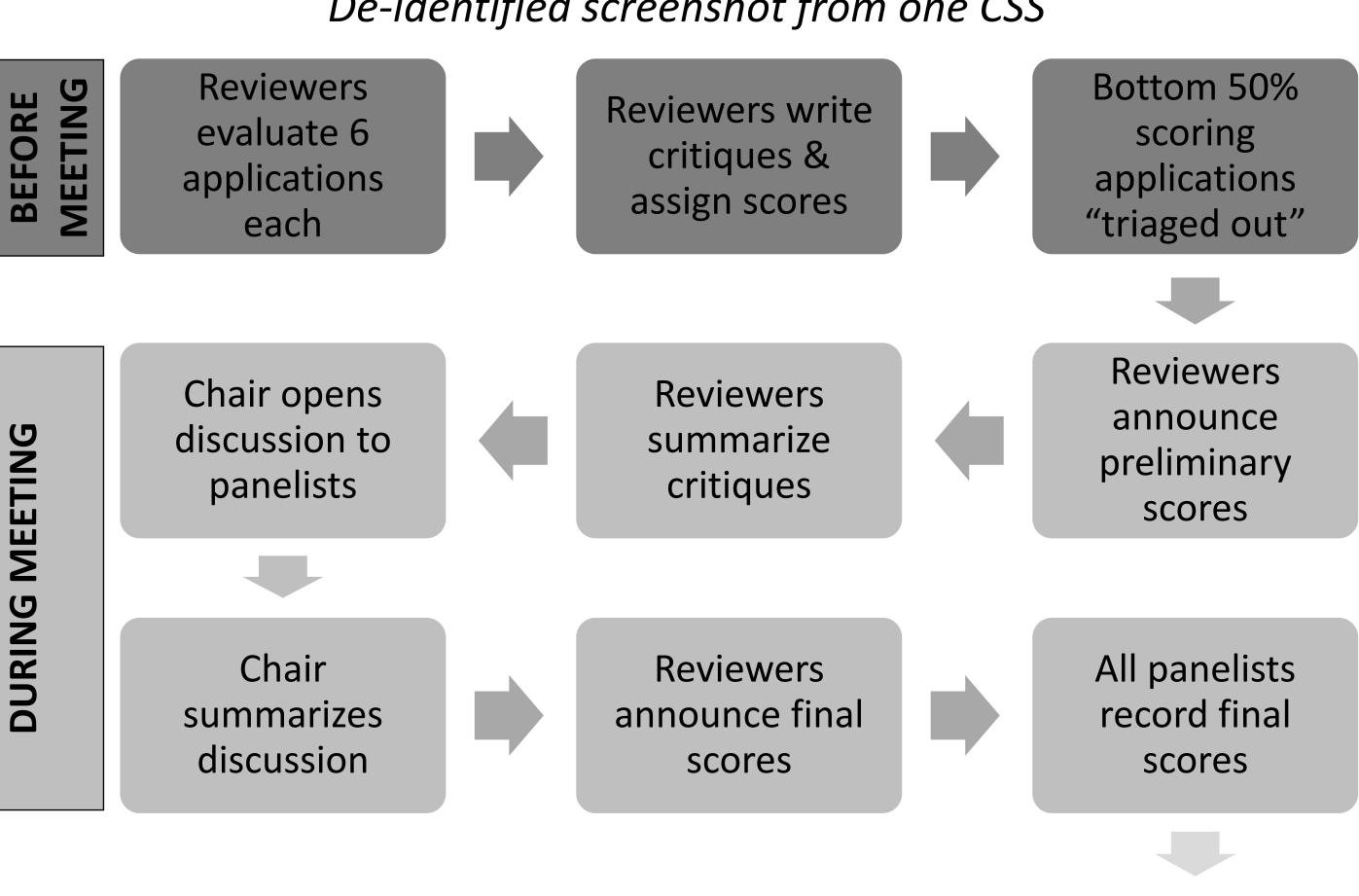
The Fallibility of Expert Scientists:

How Score Calibration Talk Undermines Fairness in the Scientific Peer Review Process

Elizabeth L. Pier, Joshua Raclaw, Anna Kaatz, Markus Brauer, Molly Carnes, Mitchell J. Nathan, & Cecilia E. Ford

Low agreement among individual reviewers

42 experienced reviewers for NIH participating in one of four videotaped *Constructed Study Sections* (CSS)


Constructed Study Sections

reviewed

25 R01 grant applications submitted between 2012 – 2015 to the Oncology 1 or Oncology 2 review groups within NIH's National Cancer Institute

De-identified screenshot from one CSS

Overall Impact	Score	Descriptor
	1	Exceptional
High	2	Outstanding
	3	Excellent
	4	Very Good
Medium	5	Good
	6	Satisfactory
Low	7	Fair
	8	Marginal
	9	Poor

Critiques

compiled into

Summary

Statement for PI

Reviewers may

edit written

critiques

Final panel score

used by NIH for

funding

decisions

Better agreement within each panel

r = .936

Score Calibration Talk

Self-Initiated SCT

TB-2: Yeah so I gave it a one, and you know, as you mentioned before, you only give a one once in a lifetime, so to speak. And I thought that this was one of the the best grants I guess I've ever written-I've ever read, because really cause of three things. There is, I thought that the impact was large and obvious, and it was largely driven by quite a bit of of preliminary data...

Other-Initiated SCT

Other comments? (pause) So with that, let's hear our new scores? So I'll move to a four. Chair: Secondary? Uh, I'll move to four also. CV-2: Dr. Joshi? Chair: I had four to begin with and I'll stay there. Anyone outside that ra-these are pretty serious Chair: concerns that were raised. Four is a very high JR: Yeah. CV-2: Yeah mine, actually go to a five. (group laughter) Chair: Okay. GJ-3: I'll go to five. MP01: I'll go to five. Let's go again. The preliminary-um new scores are? (group laughter) Preliminary? Dr. Patil?

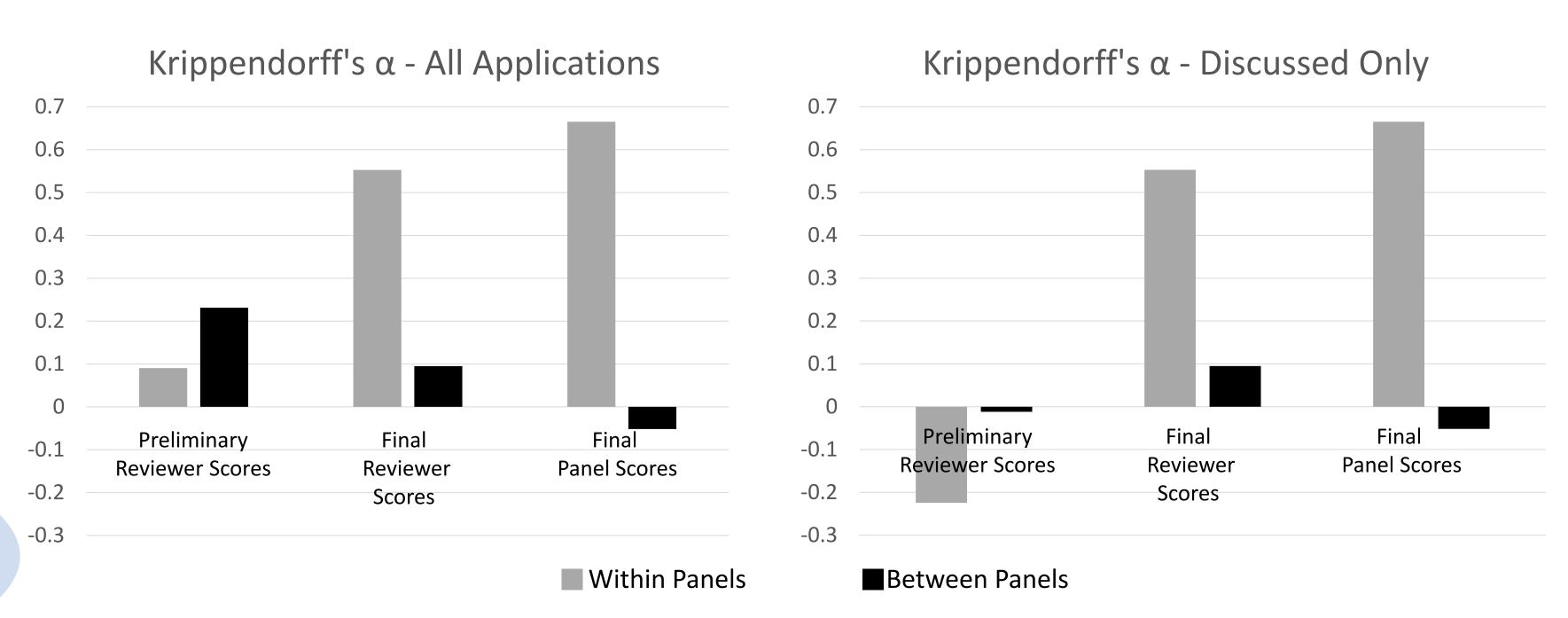
Score Calibration Talk (SCT)

MP-1:

CV-2:

GJ-3:

Five.


Five.

Five.

	CSS1	CSS2	CSS3	CSS4	Total
Self-Initiated SCT					
# instances	15	18	11	12	56
Time (m:s)	3:33	4:36	2:09	2:37	12:55
Other-Initiated SCT					
# instances	7	3	4	1	15
Time (m:s)	6:07	4:28	5:27	1:46	17:48
Total SCT					
# instances	22	21	15	15	71
Time (m:s)	9:40	9:04	7:36	4:23	30:43

r = -.606

Values of $\alpha > .80$ are "reliable", .67 - .80 are "tentative" (Krippendorff, 2013)

Range of scores for an application significantly decreased within each panel after discussion:

ge Final Range	t _(df) , p
M = 0.73	$t_{10} = 3.99$
(SD = 0.91)	p = .003
M = 0.73	t_{10} = 4.49
(SD = 0.786)	p = .001
M = 1.09	t_{10} = 2.80
(SD = 0.54)	p = .019
M = 0.88	$t_7 = 2.97$
(SD = 0.35)	p = .021
	M = 0.73 $(SD = 0.91)$ $M = 0.73$ $(SD = 0.786)$ $M = 1.09$ $(SD = 0.54)$ $M = 0.88$

Range of scores for an application significantly increased between panels after discussion:

> Prelim Range Final Range $t_{(df)}$, pM = 1.31 $t_{11} = -2.19$ M = 0.71(SD = 0.45) (SD = 0.97) p = .05

SCT & Scoring Variability

SCT &		SCT &			
Reviewer Score Change:		Panel Score Con	Panel Score Convergence:		
Self-Initiated SCT	Correlation	Self-Initiated SCT	Correlation		
# instances	r = .108	# instances	r = .682		
Time (m:s)	r = .067	Time (m:s)	r = .657		
Other-Initiated SCT		Other-Initiated SCT			
# instances	r = .978	# instances	r = .858		
Time (m:s)	r = .961	Time (m:s)	r = .784		
Total SCT		Total SCT			
# instances	r = .717	# instances	r = .980		
Time (m:s)	r = .809	Time (m:s)	r = .936		

Relationship between within-panel score converge & between-panel score divergence:

$$r = -.606 (p = .005)$$